Find hcf of 180,252 and 324using Euclid division lemma
Answers
Answered by
2
since 252 is smaller than 324
324=252*1+72
252=72*3+36
72=36*2+0
therefore, HCF(252, 324)=36
now ,180=36*5+0
therefore, HCF(180, 36)=36
Hence, HCF(180, 252, 324)=36
hope it helps:)
324=252*1+72
252=72*3+36
72=36*2+0
therefore, HCF(252, 324)=36
now ,180=36*5+0
therefore, HCF(180, 36)=36
Hence, HCF(180, 252, 324)=36
hope it helps:)
Answered by
1
180 = ![2^{2}3^{2}5 2^{2}3^{2}5](https://tex.z-dn.net/?f=2%5E%7B2%7D3%5E%7B2%7D5)
252 =![2^{2}3^{2}7 2^{2}3^{2}7](https://tex.z-dn.net/?f=2%5E%7B2%7D3%5E%7B2%7D7)
324 =![2^{2}3^{4} 2^{2}3^{4}](https://tex.z-dn.net/?f=2%5E%7B2%7D3%5E%7B4%7D)
HCF(180,252,324) =![2^{2}3^{2} 2^{2}3^{2}](https://tex.z-dn.net/?f=2%5E%7B2%7D3%5E%7B2%7D)
= 36
252 =
324 =
HCF(180,252,324) =
= 36
Similar questions