Find (i) gof and (ii) fog where
i) f(x) = x - 2, g(x) = x² + 3x + 1
ii)
Answers
Answered by
0
i) f(x) = x - 2 and g(x) = x² + 3x + 1
gof = g(f(x)) = g(x - 2)
= (x - 2)² + 3(x - 2) + 1
= x² - 4x + 4 + 3x - 6 + 1
= x² - x - 1
hence, gof = x² - x - 1
fog = f(g(x)) = f(x² + 3x + 1)
= (x² + 3x + 1) - 2
= x² + 3x - 1
hence, fog = x² + 3x - 1
ii) f(x) = 1/x and g(x) = (x - 2)/(x + 2)
gof = g(f(x))
= g(1/x)
= (1/x - 2)/(1/x + 2)
= (1 - 2x)/(1 + 2x)
hence, gof = (1 - 2x)/(1 + 2x)
fog = f(g(x))
= f[(x - 2)/(x + 2)]
= 1/[(x - 2)/(x + 2)]
= (x + 2)/(x - 2)
hence, fog = (x + 2)/(x - 2)
gof = g(f(x)) = g(x - 2)
= (x - 2)² + 3(x - 2) + 1
= x² - 4x + 4 + 3x - 6 + 1
= x² - x - 1
hence, gof = x² - x - 1
fog = f(g(x)) = f(x² + 3x + 1)
= (x² + 3x + 1) - 2
= x² + 3x - 1
hence, fog = x² + 3x - 1
ii) f(x) = 1/x and g(x) = (x - 2)/(x + 2)
gof = g(f(x))
= g(1/x)
= (1/x - 2)/(1/x + 2)
= (1 - 2x)/(1 + 2x)
hence, gof = (1 - 2x)/(1 + 2x)
fog = f(g(x))
= f[(x - 2)/(x + 2)]
= 1/[(x - 2)/(x + 2)]
= (x + 2)/(x - 2)
hence, fog = (x + 2)/(x - 2)
Similar questions