Math, asked by anupamtiwari0811, 10 months ago


Find
(i) the slant height of the cone.
(ii) total surface area
if

The volume of a right circular cone is 9856 cm3 and the area of its base is616​

Answers

Answered by sheetalkanojia20
0

............... ......

Answered by Angie432
1

Answer:

Step-by-step explanation:

(i) the slant height of the cone - l =r^{2} + h^{2}

(ii) total surface area  - π r 2 + π L r

if   the volume of a right circular cone is 9856cm^{2} and the area of its base is 616​.

we have given 

 volume of the cone = 9856 cm³

and area of its base is = 616 cm²

we have to find 

(1) slant height if the cone = ? 

(2) total surface area of the cone = ? 

solution :-

we know that 

slant height (l) of the cone = √ ( r² + h²)

volume of cone = πr²h/3

and 

surface area of cone = πr{r + l }

now

given that 

area of its base is = 616 cm²

=> πr² = 616

=> r² = 616 / π

=> r² =196.178 

=> r = 14.01 ≈ 14 cm

also 

volume of cone = 9856 cm³

=>  πr²h/3 = 9856 cm³

=>  π × 616 / π × h = 9856 ×3

=>  h = 48 cm 

Slant height = \sqrt{r^{2} + h^{2}  }

                    =\sqrt{14^{2} + 48^{2}  }

                   = \sqrt{2500} = 50 cm

∴ Slant Height = 50cm.

Total surface area =  \pi r^{2}  +\pi l r

                              = \frac{22}{7} * 14^{2} + \frac{22}{7} * 50 * 14

                              = \frac{22}{7} * 14*14 + 22*50*2

                              = 22 *14*2  + 22*50*2

                              = 616 + 2200

                              =  2816cm^{2}

Hope this helps you friend.

Similar questions