Math, asked by gokulaenugu2005, 19 days ago

find if limit exist ​

Attachments:

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\sf{f(x)=\begin{cases}\sf{\dfrac{|x+7|}{x+7}\,\,\,\,\,\,\,,x\ne-7}\\\\\sf{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,,x=-7}\end{cases}}

\tt{LHL:\displaystyle\lim_{x\to(-7)^-}f(x)=\lim_{h\to0}f(-7-h)}

\tt{\displaystyle\,=\lim_{h\to0}\dfrac{|-7-h+7|}{-7-h+7}}\\

\tt{\displaystyle\,=\lim_{h\to0}\dfrac{|-h|}{-h}}\\

\tt{\displaystyle\,=-\lim_{h\to0}\dfrac{h}{h}}\\

\tt{\displaystyle\,=-\lim_{h\to0}(1)}\\

\tt{\displaystyle\,=-1}\\

\tt{RHL:\displaystyle\lim_{x\to(-7)^+}f(x)=\lim_{h\to0}f(-7+h)}

\tt{\displaystyle\,=\lim_{h\to0}\dfrac{|-7+h+7|}{-7+h+7}}\\

\tt{\displaystyle\,=\lim_{h\to0}\dfrac{|h|}{h}}\\

\tt{\displaystyle\,=\lim_{h\to0}\dfrac{h}{h}}\\

\tt{\displaystyle\,=1}\\

Since LHL\ne\,RHL

Hence, limit does not exists

Similar questions