Math, asked by kartikays2399, 10 months ago

Find in what ratio the line 3x+y=9 divides the line joining the points (1,3) (2,7)

Answers

Answered by Anonymous
12

Answer :-

3 : 4

Solution :-

Let the ratio of which 3x + y = 9 divides the line (1,3) (2,7) be k : 1

Using Section formula

 \sf P(x,y) =  \bigg( \dfrac{m x_2 + nx_1  }{m + n} ,\dfrac{m y_2 + ny_1  }{m + n}  \bigg)

(1,3) (2,7)

Here,

  • m = k
  • n = 1
  • x2 = 2
  • x1 = 1
  • y2 = 7
  • y1 = 3

Substituting the values

 \implies \sf P(x,y) =  \bigg( \dfrac{k(2) +1(1)  }{k + 1} ,\dfrac{k(7) + 1(3)  }{k + 1}  \bigg)

 \implies \sf P(x,y) =  \bigg( \dfrac{2k +1 }{k + 1} ,\dfrac{7k+ 3}{k + 1}  \bigg)

Comparing on both sides

 \implies \sf x =  \dfrac{2k +1 }{k + 1} \qquad ,y = \dfrac{7k+ 3}{k + 1}

Now, substituting the values of x- coordinates and y - coordination in 3x + y = 9

 \implies \sf 3 \bigg(\dfrac{2k +1 }{k + 1} \bigg) +  \dfrac{7k+ 3}{k + 1}  = 9

 \implies \sf \dfrac{6k +3}{k + 1} +  \dfrac{7k+ 3}{k + 1}  = 9

 \implies \sf \dfrac{6k +3 + 7k + 3}{k + 1} = 9

 \implies \sf \dfrac{13k + 6}{k + 1} = 9

 \implies \sf 13k + 6= 9k + 9

 \implies \sf 13k  -  9k  = 9 - 6

 \implies \sf 4k  = 3

 \implies \sf k  =  \dfrac{3}{4}

Therefore the ratio which divides the line is 3/4 : 1 or 3 : 4.

Similar questions