Math, asked by nikhilm185, 1 year ago

Find
integral tan^-x​

Answers

Answered by Krishna0007
1

Discussion of

(integral) tan x = - ln|cos x| + C.

1. Proof

Strategy: Make in terms of sin's and cos's; Use Substitution.

(integral) tan x dx = (integral) sin x

COs x dx

set

u = COs x.

then we find

du = - sin x dx

substitute du=-sin x, u=COs x

(integral) sin x

COs x dx = - (integral)

(-1) sin x dx

COs x

= - (integral) du

u

Solve the integral

= - ln |u| + C

substitute back u=COs x

= - ln |COs x| + C

Q.E.D.

2. Alternate Form of Result

(integral) tan x dx = - ln |COs x| + C

= ln | (COs x)-1 | + C

= ln |sec x| + C

Therefore:

(integral) tan x dx = - ln |COs x| + C = ln |sec x| + C

Answered by ThinkingBoy
1

\int\ {tan^{-1}x} \, dx

= \int\ {tan^{-1}x}*1 \, dx

Applying Integration by parts, we get

\int\ {tan^{-1}x}*1 \, dx

= tan^{-1}x*\int{dx} - \int{\frac{d}{dx}(tan^{-1}x)*\int{dx}

= xtan^{-1}x - \int{\frac{1}{1+x^2}*xdx

= xtan^{-1}x-\frac{1}{2} \int{\frac{2x}{1+x^2}dx

= xtan^{-1}x-\frac{1}{2} log|1+x^2|+c

Hence

\int{tan^{-1}x} \, dx= xtan^{-1}x-\frac{1}{2} log|1+x^2|+c

HOPE IT HELPS!!

AND MARK AS BRAINLIEST IF YOU LIKE IT!!

Similar questions