Physics, asked by vllblavanyasaini0409, 7 months ago

find integral value of π/2.d theta with limit -4 to -1​

Answers

Answered by Asterinn
14

 \implies \displaystyle \sf\int\limits^{-1}_{-4} {\dfrac{\pi }{2} } \, d \theta

  \implies\displaystyle \sf{\dfrac{\pi }{2} }\int\limits^{-1}_{-4}  1\, d \theta

We know that :-

 \underline{\displaystyle \bf \boxed{\int\limits 1\, d x=  x + c}  }

Therefore now :-

\implies\displaystyle \sf{\dfrac{\pi }{2} }\int\limits^{-1}_{-4}  1\, d \theta = (\dfrac{\pi }{2} \times  \theta)]^{-1} _{-4}

Now we will substract lower limit from upper limit.

\implies\displaystyle   \sf (\dfrac{\pi }{2} \times  \theta)]^{-1} _{-4}

\implies\displaystyle   \sf (\dfrac{\pi }{2} \times   - 1) - (\dfrac{\pi }{2} \times   - 4)

\implies\displaystyle   \sf ( - \dfrac{\pi }{2} ) - (\dfrac{ - 4\pi }{2} )

\implies\displaystyle   \sf  - \dfrac{\pi }{2}   + \dfrac{ 4\pi }{2}

\implies\displaystyle   \sf    \dfrac{ 3\pi }{2}

Answer :

\displaystyle \sf\int\limits^{-1}_{-4} {\dfrac{\pi }{2} } \, d \theta = \bf \dfrac{ 3\pi }{2}

__________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

Answered by rinayjainsl
5

Answer:

The value of given integral under given limits is

 \frac{3\pi}{2}

Explanation:

Given that,we have to find the integral value of 0.5πdθ with upper and lower limits -1 and -4 respectively

I = \int _{ - 4 }^{ - 1 } \frac{\pi}{2} dθ \\  =  \frac{\pi}{2} \int _{ - 4 }^{ - 1 }  dθ

We have a formula for integration as follows

\int dt = t +c

Using this we get

I =  \frac{\pi}{2} ( - 1 - ( - 4)) =  \frac{3\pi}{2}

Therefore,the value of given integral under given limits is

 \frac{3\pi}{2}

#SPJ2

Similar questions