Math, asked by aarushi200, 8 months ago

Find integrate of (sin^2x-cos^2x)/(sinx×cosx) dx.​​

Answers

Answered by kaushik05
11

To Integrate :

 \star \:  \int \:  \frac{ {sin}^{2}x  -   {cos}^{2} x }{sinx \: cosx} dx \\

 \implies \:  \int \:  \frac{ {  sin}^{2}x }{sinx \: cosx} dx -  \int \:  \frac{ { cos}^{2} x}{ sinx \: cosx \: } dx \\  \\  \implies \int \:  \frac{ { \cancel{sin}}^{2}x }{ \cancel{sinx}cosx} dx -  \int \:  \frac{ { \cancel{cos}}^{2}x }{ sinx \cancel{cosx}} dx \\  \\  \implies \:  \int \:  \frac{sinx}{cosx} dx -  \int \:  \frac{cosx}{sinx} dx \\   \\  \implies \int \: tanx \: dx -  \int \: cotx \: dx \\  \\  \implies \:  ln(secx)  -  ln(sinx)  + c \\  \\  \implies \:  ln( \frac{secx}{sinx} )  + c

Formula :

 \star   \boxed{\bold{ \int \: tanx \: dx =  ln(secx)  + c}} \\  \\  \star \boxed{ \bold{ \int \: cotx \: dx =  ln(sinx)  + c}}

Answered by parry8016
1

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions