Math, asked by komal1654, 1 year ago

find integration of sin^6x+sin^6x/sin^2x sin^2x​

Answers

Answered by Swarup1998
10
\underline{\texttt{Corrected Question :}}

\mathrm{Find\:\int \frac{sin^{6}x+cos^{6}x}{sin^{2}x\:cos^{2}x}\:dx}

\underline{\texttt{Solution :}}

\mathrm{Now,\:\frac{sin^{6}x+cos^{6}x}{sin^{2}x\:cos^{2}x}}

\mathrm{=\frac{(sin^{2}x+cos^{2}x)^{3}-3\:sin^{2}x\:cos^{2}x(sin^{2}x+cos^{2}x)}{sin^{2}x\:cos^{2}x}}

\mathrm{=\frac{1-3\:sin^{2}x\:cos^{2}x}{sin^{2}x\:cos^{2}x}}

\mathrm{=\frac{1}{sin^{2}x\:cos^{2}x}-3}

\mathrm{=cosec^{2}x\:sec^{2}x-3}

\mathrm{=(1+cot^{2}x)sec^{2}x-3}

\mathrm{=sec^{2}x+cot^{2}x\:sec^{2}x-3}

\mathrm{=sec^{2}x+\frac{sec^{2}x}{(tanx)^{2}}-3}

\mathrm{Then,\:\int \frac{sin^{6}x+cos^{6}x}{sin^{2}x\:cos^{2}x}\:dx}

\mathrm{=\int \{sec^{2}x+\frac{sec^{2}x}{(tanx)^{2}}-3\}\:dx}

\mathrm{=\int sec^{2}x\:dx+\int \frac{sec^{2}x}{(tanx)^{2}}dx-3\int dx}

\mathrm{=\int sec^{2}x\:dx+\int \frac{d(tanx)}{(tanx)^{2}}-3\int dx}

\mathrm{=tanx-\frac{1}{tanx}-3x+C}

\texttt{where C is integral constant}

\to \boxed{\mathrm{\int \frac{sin^{6}x+cos^{6}x}{sin^{2}x\:cos^{2}x}\:dx=tanx-\frac{1}{tanx}-3x+C}}

\texttt{which is the required integral}

\underline{\texttt{Rules to remember :}}

\mathrm{1.\:\int sec^{2}x\:dx=tanx+C}

\texttt{where C is integral constant}

\mathrm{2.\:\int x^{n}dx=\frac{x^{n+1}}{n+1}+C}

\texttt{where C is integral constant}

\mathrm{3.\:\int \frac{d\{f(x)\}}{\{f(x)\}^{2}}=-\frac{1}{f(x)}+C}

\texttt{where C is integral constant}

Swarup1998: :)
generalRd: bhaloo
Swarup1998: :)
Similar questions