Find integration of tan^2 x/2
Answers
Answer:
You can start by writing
tan
2
(
x
)
=
sin
2
(
x
)
cos
2
(
x
)
giving:
∫
tan
2
(
x
)
d
x
=
∫
sin
2
(
x
)
cos
2
(
x
)
d
x
=
using:
sin
2
(
x
)
=
1
−
cos
2
(
x
)
you get:
=
∫
1
−
cos
2
(
x
)
cos
2
(
x
)
d
x
=
∫
[
1
cos
2
(
x
)
−
1
]
d
x
=
=
∫
1
cos
2
(
x
)
d
x
−
∫
1
d
x
=
=
tan
(
x
)
−
x
+
c
Step-by-step explanation:
Answer:
You can start by writing
tan
2
(
x
)
=
sin
2
(
x
)
cos
2
(
x
)
giving:
∫
tan
2
(
x
)
d
x
=
∫
sin
2
(
x
)
cos
2
(
x
)
d
x
=
using:
sin
2
(
x
)
=
1
−
cos
2
(
x
)
you get:
=
∫
1
−
cos
2
(
x
)
cos
2
(
x
)
d
x
=
∫
[
1
cos
2
(
x
)
−
1
]
d
x
=
=
∫
1
cos
2
(
x
)
d
x
−
∫
1
d
x
=
=
tan
(
x
)
−
x
+
c
Step-by-step explanation:
plz mark my answer as brainliest if this helps you