Math, asked by sonal4255, 1 year ago

Find inverse of matrices ​

Attachments:

Answers

Answered by Anonymous
8

INVERSE BY ADJOINT METHOD :

check the determinant, whether it's equal to zero or not

 |A|= \begin{vmatrix}3&4&2\\5&5&2\\5&7&3\end{vmatrix}

= 3(15 - 14)-4(15-10)+2(35-25)

=3-20+20 = 3 $\neq$ 0

\implies \sf \:therefore\:A^{-1}\:Exist

Now, find the co-factors ,

A11=M11\:(-1)^{1+1}=\begin{vmatrix}5&2\\7&3\end{vmatrix}=(15-14)=1

A12=M12\:(-1)^{1+2}=\begin{vmatrix}5&2\\5&3\end{vmatrix}(-1)^{1+2}=-(15-10)=-5

A13=M13\:(-1)^{1+3}=\begin{vmatrix}5&5\\5&7\end{vmatrix}(-1)^{1+3}=(35-25)=10

A21=M21\:(-1)^{2+1}=\begin{vmatrix}4&2\\7&3\end{vmatrix}(-1)^3=-(12-14)=2

A22=M22\:(-1)^{2+2}=\begin{vmatrix}3&2\\5&3\end{vmatrix}(-1)^{4}=(9-10)=-1

A23=M23\:(-1)^{2+3}=\begin{vmatrix}3&4\\5&7\end{vmatrix}(-1)^5=-(21-20)=-1

A31=M31\:(-1)^{3+1}=\begin{vmatrix}4&2\\5&2\end{vmatrix}(-1)^4=(8-10)=-2

A32=M32\:(-1)^{3+2}=\begin{vmatrix}3&2\\5&2\end{vmatrix}(-1)^5=-(6-10)=4

A33=M33\:(-1)^{3+3}=\begin{vmatrix}3&4\\5&5\end{vmatrix}(-1)^{3+3}=(15-20)=-5

Therefore co-factors of matrix is

\sf \displaystyle{\left[A_{ij}\right]_{3\times3}}=\left[\begin{array}{ccc}A11&A12&A13\\A21&A22&A23\\A31&A32&A33\end{array}\right]=\left[\begin{array}{ccc}1&-5&10\\2&-1&-1\\-2&4&5\end{array}\right]

\sf Adj(A)=\sf \displaystyle{\left[A_{ij}\right]^{T}_{3\times3}}=\left[\begin{array}{ccc}1&2&-2\\-5&-1&4\\10&-1&-5\end{array}\right]

\sf A^{-1}=\frac{1}{|A|}(adjA)=\frac{1}{|3|}\left[\begin{array}{ccc}1&2&-2\\-5&-1&4\\10&-1&-5\end{array}\right]

Similar questions