Math, asked by DIMPLE8832, 9 months ago

find its anti derivative ​

Attachments:

Answers

Answered by Anonymous
1

Given ,

The function is  \tt \sqrt{x}  +  \frac{1}{ \sqrt{x} }

Integrating wrt x , we get

\tt \implies \int \{\sqrt{x}  +  \frac{1}{ \sqrt{x} }  \} \:  dx

\tt \implies\int \{ {(x)}^{ \frac{1}{2} }  +     {(x)}^{ -  \frac{1}{2} } \} \:  dx

\tt \implies\int \{ {(x)}^{ \frac{1}{2} }  \}  \:  \: dx \: +  \:     \int \{{(x)}^{ -   \frac{1}{2} } \}\:  dx

  \tt \implies \frac{ 2{(x)}^{ \frac{3}{2} } }{3}  +  \frac{2 {(x)}^{ \frac{1}{2} } }{1}  + C

Therefore , the correct option is C

Remmember :

\tt \implies  \int  {(x)}^{n} \:  \: dx =  \frac{ {(x)}^{n + 1} }{n + 1}  + C

_______________ Keep Smiling ☺

Answered by shadowsabers03
7

We have,

\displaystyle\longrightarrow\int x^n\ dx=\dfrac{x^{n+1}}{n+1},\quad\!n\neq-1

Replacing n by \dfrac{1}{n} we get the following.

\displaystyle\longrightarrow\int x^{\frac{1}{n}}\ dx=\dfrac{n}{n+1}\cdot x^{\frac{n+1}{n}},\quad\!n\neq-1\quad\quad\dots(i)

Here,

\displaystyle\longrightarrow I=\int\left(\sqrt x+\dfrac{1}{\sqrt x}\right)\ dx

Or,

\displaystyle\longrightarrow I=\int\left(x^{\frac{1}{2}}+\dfrac{1}{x^{\frac{1}{2}}}\right)\ dx

\displaystyle\longrightarrow I=\int\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)\ dx

\displaystyle\longrightarrow I=\int x^{\frac{1}{2}}\ dx+\int x^{\frac{1}{-2}}\ dx\quad\quad\dots(1)

Evaluating each integral using (i),

\displaystyle\longrightarrow\int x^{\frac{1}{2}}\ dx=\dfrac{2}{3}\,x^{\frac{3}{2}}

and,

\displaystyle\longrightarrow\int x^{\frac{1}{-2}}\ dx=\dfrac{-2}{-1}\,x^{\frac{-1}{-2}}

\displaystyle\longrightarrow\int x^{\frac{1}{-2}}\ dx=2x^{\frac{1}{2}}

Then (1) becomes,

\displaystyle\longrightarrow\underline{\underline{I=\dfrac{2}{3}\,x^{\frac{3}{2}}+2x^{\frac{1}{2}}+C}}

Hence (C) is the answer.

Similar questions