Math, asked by ujjaini06, 6 hours ago

find k for which the following equation has real & distinct roots kx (x-2) +6 =0​

Answers

Answered by anand754086
0

Answer:

Given,

kx(x−2)+6=0

kx

2

−2kx+6=0

Since the roots are equal,

⇒b

2

=4ac

(−2k)

2

=4(k)(6)

4k

2

=4k(6)

∴k=6

Step-by-step explanation:

Mark me in brainliest

Answered by NewGeneEinstein
16

Answer:-

  • Simplify first

\\ \sf\longmapsto kx(x-2)+6=0

\\ \sf\longmapsto kx^2-2kx+6=0

  • a=k
  • b=2k
  • c=6

If it has real and distinct roots then

\\ \sf\longmapsto D=0

\\ \sf\longmapsto b^2-4ac=0

\\ \sf\longmapsto (2k)^2-4(k)(6)=0

\\ \sf\longmapsto 4k^2-24k=0

\\ \sf\longmapsto 4k^2=24k

\\ \sf\longmapsto 4k=24

\\ \sf\longmapsto k=\dfrac{24}{4}

\\ \sf\longmapsto k=6

Similar questions