Math, asked by jikki5402, 1 year ago

Find k, if the roots of x²–(3k–2)x+2k=0 are equal and real.

Answers

Answered by abhi569
32

 \mathbf{ {x}^{2} - ( 3k - 2 ) + 2k = 0}</p><p> \\  \\  \\  \bold{On  \: comparing  \: the  \: given \:  equation  \: with  \: ( a {x}^{2} + bx + c = 0 ), \:   we  \: get </p><p>} \\  \\ </p><p>a = 1 \\ </p><p>b = - ( 3k - 2 )  \\ </p><p>c = 2k</p><p>

We know, discriminant = b² - 4ac

=> [ - ( 3k - 2 ) ]² - 4( 1 × 2k )

=> 9k² + 4 - 12k - 8k

=> 9k² + 4 - 20 k

=> 9k² - 20k + 4

=> 9k² - 18k - 2k + 4

=> 9k( k - 2 ) - 2( k - 2 )

=> ( k - 2 ) ( 9k - 2 )

 \bold{We  \: know,  \: For \:  equal \:  roots, \:  discriminant = 0}

=> ( k - 2 ) ( 9k - 2 ) = 0

 \mathbf{By  \: Zero  \: Product \:  Rule} \\  \\  \\ k = 2 \:  \:  \:  \:  \: or \:  \:  \:  \: k =   \frac{2}{9}

Answered by Diptanshu11
16
HOPE IT WILL HELP YOU
Attachments:
Similar questions