Math, asked by tusharsinghdudhkaura, 4 months ago

Find K , if the sum of the zeroes of the polynomial x2 – (K +6)x + 2 (2 K -1) is half

their product​

Answers

Answered by sumithiraj15046
0

Answer:

if a & ß are the zeroes of the quadratic polynomial f(x) = x2 – 3x - 2, then find a quadratic polynomial

Answered by brainlyofficial11
3

Aɴsᴡᴇʀ

we have,

  • quadratic polynomial = x² - (k + 6)x + 2(2k - 1)
  • sum of zeroes = ½ product of zeroes

_________________________

to find

  • value of k ?

_________________________

firstly compare the polynomial with ax² + bx + c = 0

so, here x² - (k + 6)x + 2(2k - 1)

  • coefficient of x², (a) = 1
  • coefficient of x, (b) = - (k + 6)
  • constant term, (c) = 2(2k - 1)

and we know that,

 \boxed {\bold{sum \: of \: zeroes =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}

 \boxed{ \bold{product \: of \: zeroes =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}

now,

\bold{sum \: of \: zeroes =  \frac{ \cancel  -  \{ \cancel - (k + 6) \} }{1} = k + 6 } \\

and

 \bold{product \: of \: zeroes =  \frac{2(2k - 1)}{1}  =2(2k - 1)} \\

______________________________

and here it is given that,

sum of zeroes = ½ product of zeroes

 :  \implies k + 6 =  \frac{1}{ \cancel2}  \times  \cancel2(2k - 1) \\  \\  :  \implies \: k + 6 = 2k - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   : \implies 2k  - k = 6 + 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   : \implies \boxed{ \pink{ k = 7} }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, value of k is 7

Similar questions