Math, asked by vasanthrao521, 10 months ago

Find k so that k, k+2, k+6 are consecutive terms of G.P​

Answers

Answered by aniltony355
3

Answer:

k=2

Step-by-step explanation:

Given terms are in G.P.

So that k+6/k+2=k+2/k

by cross multiplication we get,

k^2+6k=k^2+2k+2k+4

k^2+6k=K^2+4k+4

k^2+6k-k^2-4k-4=0

2k-4=0

2k=4

k=2

Answered by Anonymous
1

 \sf \huge \purple{  \underline{ \fbox{ \:   \red{Solution \:  \:  : }}}}

Given ,

k , k + 2 , k + 6 are forms an GP

Therefore ,

 \hookrightarrow \sf  \frac{k + 2}{k}  =  \frac{k + 6}{k + 2}  \\  \\ \sf By \:  cross \:  multiplication \:  , \:  we \:  obtain  \\  \\ \hookrightarrow \sf   {( k + 2)}^{2}  =  {k}^{2}  + 6k \\  \\ \hookrightarrow \sf   {k}^{2}  + {(2)}^{2}  + 2(k)(2) =  {k}^{2}  + 6k \\  \\  \hookrightarrow \sf  {k}^{2}  + 4 + 4k =  {k}^{2}  + 6k \\  \\ \hookrightarrow \sf  2k = 4 \\  \\ \hookrightarrow \sf   k = 2

Hence , the value of k is 2

Similar questions