Find k so that x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6 also find all the zeroes of the two polynomials.
Class 10
No Spams
Answers
HELLO DEAR,
GIVEN:-
x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6
so,
x² + 2x + k )2x⁴ + x³ - 14x² + 5x + 6(2x² - 3x - (8 +2k)
2x⁴ + 4x³ + 2kx²
=======================
-3x³ - x²(14 + 2k) + 5x
-3x³ - 6x² - 3kx
===========================
-x²(8 + 2k) + x(5 + 3k) + 6
-x²(8 + 2k) - 2x(8 + 2k) - k(8 + 2k)
=============================
x(21 + 7k) + (2k² + 8k + 6)
now,
given that:-
x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6
so, remainders should be 0.
thus, x(21 + 7k) + (2k² + 8k + 6) = 0
comparing cofficient of x both side,
(21 + 7k) = 0
7k = -21
k = -3,
hence, x² + 2x + k = x² + 2x - 3
roots of x² + 2x - 3 = 0 is
x² + 3x - x - 3 = 0
x(x + 3) - 1(x + 3) = 0
(x - 1)(x + 3) = 0
x = 1 , x = -3
AND,
roots of 2x² - 3x - (8 +2k) = 2x² - 3x - (8 - 6)
2x² - 3x - 2 = 0
2x² - 4x + x - 2 = 0
2x(x - 2) + 1(x - 2) = 0
(2x + 1)(x - 2) = 0
x = 2 , x = -1/2
I HOPE ITS HELP YOU DEAR,
THANKS