Math, asked by Anonymous, 1 year ago

Find k so that x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6 also find all the zeroes of the two polynomials.


Class 10



No Spams

Answers

Answered by rohitkumargupta
18

HELLO DEAR,




GIVEN:-


x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6




so,



x² + 2x + k )2x⁴ + x³ - 14x² + 5x + 6(2x² - 3x - (8 +2k)


                2x⁴ + 4x³ + 2kx²


               =======================


         -3x³ - x²(14 + 2k) + 5x


         -3x³ - 6x² - 3kx


       ===========================                    


        -x²(8 + 2k) + x(5 + 3k) + 6          


        -x²(8 + 2k) - 2x(8 + 2k) - k(8 + 2k)


       =============================


            x(21 + 7k) + (2k² + 8k + 6)



now,


given that:-


x^2 + 2x + k is a factor of 2x^4 + x^3 - 14x^2 + 5x + 6



so, remainders should be 0.



thus, x(21 + 7k) + (2k² + 8k + 6) = 0



comparing cofficient of x both side,



(21 + 7k) = 0



7k = -21



k = -3,



hence, x² + 2x + k = x² + 2x - 3



roots of x² + 2x - 3 = 0 is



x² + 3x - x - 3 = 0



x(x + 3) - 1(x + 3) = 0



(x - 1)(x + 3) = 0



x = 1 , x = -3



AND,



roots of 2x² - 3x - (8 +2k) = 2x² - 3x - (8 - 6)


\Rightarrow 2x² - 3x - 2 = 0



2x² - 4x + x - 2 = 0



2x(x - 2) + 1(x - 2) = 0



(2x + 1)(x - 2) = 0



x = 2 , x = -1/2




I HOPE ITS HELP YOU DEAR,


THANKS


rohitkumargupta: :-)
Similar questions