Math, asked by varunvaijnath, 4 months ago

find lim x tends to27 (x^ 1/3 +3)(x^ 1/3 -3) /(x-27)​

Answers

Answered by Sasmit257
4

Step-by-step explanation:

Identity (II)

9 a^{2}  - 24ab \:  + 16b^{2}

(a - b) ^{2}

 = a^{2}  - 2ab + b ^{2}

\huge\fbox\pink{Answer}

(3a - 4b) (3a - 4b)

Using identity (II)

(3a) ^{2}   - 2 \times 3a \times 4b + (4b) ^{2}

9a^{2}  - 24ab + 16b ^{2}


BrainlyEmpire: good!
Answered by Anonymous
47

Explanation,

 \tt \red \bigstar \:  lim_{x \rightarrow \: 27} \bigg( \dfrac{(x {}^{ \dfrac{1}{3}  }  + 3)(x {}^{ \dfrac{1}{3}  }  - 3) } {(x - 27)}  \bigg) \\  \\  \\{  \underline{ \red {\tt{Applying  \: L - Hospital  \: rule, }}}} \\  \\  \\  \mapsto \tt \: lim_{x \rightarrow \: 27}  \bigg( \dfrac{ \dfrac{d}{dx}  \bigg((x {}^{ \dfrac{1}{3}  }  + 3)(x {}^{ \dfrac{1}{3}  }  - 3) \bigg) } { \dfrac{d}{dx}  \bigg(x - 27) \bigg)}  \bigg) \\  \\  \\ \mapsto \tt \: lim_{x \rightarrow \: 27}  \bigg( \dfrac{ \dfrac{2}{ 3\sqrt[3]{x} } }{1}  \bigg) \\  \\  \\ \mapsto \tt \: lim_{x \rightarrow \: 27}  \bigg( \dfrac{2}{3 \sqrt[3]{x} }  \bigg) \\  \\  \\ \mapsto \tt \:  \bigg( \dfrac{2}{3 \sqrt[3]{27} }  \bigg) \\  \\  \\  \mapsto{ \boxed { \underline{  \tt{ \dfrac{2}{9} }}}} \:  \green \bigstar

Hence,

\dag { \boxed{ \tt{lim_{x \rightarrow \: 27} \bigg( \dfrac{(x {}^{ \dfrac{1}{3}  }  + 3)(x {}^{ \dfrac{1}{3}  }  - 3) } {(x - 27)} \bigg) =  \dfrac{2}{9}  }}}


Anonymous: Awesome . Keep it up
simran7539: Splendid!!
simran7539: wlcm!
Anonymous: Awsm !!
ʝεɳყ: Perfect❤️ Keep rockin' ⚡
Similar questions