Math, asked by srikarthick596, 5 months ago

Find LSA, TSA and Volume of cube side is 12m *​

Answers

Answered by manissaha129
4

Answer:

Side of the cube is 12m.

1) Lateral surface area= 4(side)^2= 4×12^2=4×144=576m^2.

2)Total surface area= 6(side)^2= 6×12^2=6×144=864m^2.

3) Volume=(side)^3=12^3=1728m^3.

hope this will help you.

Answered by BrainlyPopularStar
87

\star \; {\underline{\boxed{\pmb{\green{\frak{ \; Given \; :- }}}}}}

\\

  • Side = 12m

\\

\begin{gathered} \\ \\\end{gathered}\star \;{\underline{\boxed{\pmb{\pink{\frak{ \; To \; Find \; :- }}}}}}

\\

  • Total Surface Area = ?

  • Curved Surface Area = ?

  • Volume of Cube = ?

\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}

\\

\star \;{\underline{\boxed{\pmb{\red{\frak{ \; SolutioN \; :- }}}}}}

\\

\maltese Formula Used :

  • {\underline{\boxed{\pmb{\sf{L .S.A_{(Cube)}=4(Side)^2 }}}}}

  • {\underline{\boxed{\pmb{\sf{T.S.A =6(Side)^2 }}}}}

  • {\underline{\boxed{\pmb{\sf{Volume_{(Cube)}=(Side)^3 }}}}}

\\ \\

Where :

  • T.S.A = Total Surface Area

  • L.S.A = Land Surface Area

\begin{gathered} \\ \\ \end{gathered}

\malteseCalculating the Land Surface  Area :

\\ \\

\begin{gathered} \begin{gathered}\qquad \; \longrightarrow \; \; \sf { Land \:  Surface \:  Area_{(Cube)}=4(Side)^2}  \\\\ \\  \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered}\qquad \; \longrightarrow \; \; \sf { Land \:  Surface \:  Area_{(Cube)}=4(12)^2}  \\ \\ \\ \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered}\qquad \; \longrightarrow \; \; \sf { Land \:  Surface \:  Area_{(Cube)}=4 \times 12 \times 12} \\ \\ \\ \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered}\qquad \; \longrightarrow \; \; \sf { Land \:  Surface \:  Area_{(Cube)}=48 \times 12}   \\ \\ \\ \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Land  \: Surface \:  Area_{(Cube)} = 576 {cm}^{2} }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered} \end{gathered}

 \\  \\

\maltese Calculating the Total Surface Area :

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { T.S.A =6(Side)^2 } \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \; \sf { T.S.A =6(12)^2 } \\ \\ \\ \end{gathered}\end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \;\sf{ T.S.A =6 \times 12\times 12 } \\ \\ \\ \end{gathered}\end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \longrightarrow \; \;\sf{ T.S.A =72\times 12 } \\ \\ \\ \end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf{Total \: Surface \: Area =864cm^2  }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}\end{gathered}

\malteseCalculating The Volume :

\begin{gathered} \begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Volume_{(Cube)}=(Side)^3  } \\ \\ \\ \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \dashrightarrow\; \; \sf {Volume_{(Cube)}=(12)^3  } \\ \\ \\ \end{gathered}\end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \dashrightarrow \; \;\sf{Volume_{(Cube)}=(12)^3  } \\ \\ \\ \end{gathered}\end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \dashrightarrow \; \; \sf {Volume_{(Cube)}=12 \times 12 \times 12 } \\ \\ \\ \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \dashrightarrow\; \; \sf {Volume_{(Cube)}=144 \times 12 } \\ \\ \\ \end{gathered} \end{gathered}

\begin{gathered} \begin{gathered}\qquad \; \dashrightarrow\; \; {\underline{\boxed{\pmb{\sf{ Volume_{(Cube)}=1728m {}^{2}  }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered} \end{gathered}

 \\  \\

\therefore Volume of Cube is 1728m^2 .

{ \qquad{ \rule{5000pt}{2pt}}}

Similar questions