Math, asked by student7172, 6 months ago

Find m, if the quadratic equation (m-12)x²+2(m-12)x+2=0 has real and equal roots
Please solve.
I will add the answerer in brainlist​

Answers

Answered by MaIeficent
21

Step-by-step explanation:

Given:-

  • A quadratic equation (m - 12)x² + 2(m - 12)x + 2 = 0

  • The roots are real and equal.

To Find:-

  • The value of m

Solution:-

For a quadratic equation ax² + bx + c = 0

If roots are real and equal → b² - 4ac = 0

In equation (m - 12)x² + 2(m - 12)x + 2 = 0

• a = coefficient of x² = (m - 12)

• b = coefficient of x = 2(m - 12)

• c = constant term = 2

 \dashrightarrow \sf  {b}^{2}  - 4ac = 0

 \dashrightarrow \sf  { \big[2(m - 12) \big]}^{2}  - 4 \times (m - 12) \times 2 = 0

 \dashrightarrow \sf   {2}^{2} \times  (m - 12) ^{2}  = 4 \times (m - 12) \times 2

 \dashrightarrow \sf    \cancel4 \times  (m - 12) ^{2}  =  \cancel4 \times (m - 12) \times 2

 \dashrightarrow \sf    (m - 12) ^{2}  =  2(m - 12)

 \dashrightarrow \sf    {m}^{2}  + 144 -( 2 \times m \times 12 )=  2m - 24

 \dashrightarrow \sf    {m}^{2}  + 144 -24m=  2m - 24

 \dashrightarrow \sf    {m}^{2}  + 144 -24m -   2m  + 24 = 0

 \dashrightarrow \sf    {m}^{2}  -26m  +  168 = 0

 \dashrightarrow \sf    {m}^{2}  -14m - 12m +  168 = 0

 \dashrightarrow \sf   m(m -14)- 12(m  -14) = 0

 \dashrightarrow \sf   (m -12)(m  -14) = 0

 \dashrightarrow \sf   m -12 \:  = 0 \:  \:  \:  \: (or) \:  \:  \: m  -14= 0

 \dashrightarrow \sf   m  = 12\:  \:  \:  \:  \: (or) \:  \:  \: m = 14

 \dashrightarrow  \underline{ \boxed{ \purple{\sf  \therefore \textsf{ \textbf{  m  = 12 \: , 14}}}}}

Answered by viny10
19

Step-by-step explanation:

Given:-

  • A quadratic equation (m - 12)x² + 2(m - 12)x + 2 = 0

  • The roots are real and equal.

{ { {\sf \ \textsf{ \textbf{ To find}}}}}\dashrightarrow</p><p>

  • The value of m

{ { \purple{\sf \ \textsf{ \textbf{ Solution}}}}}\dashrightarrow

For a quaratic equation ax² + bx + c = 0

If roots are real and equal → b² - 4ac = 0

In equation (m - 12)x² + 2(m - 12)x + 2 = 0

• a = coefficient of x² = (m - 12)

• b = coefficient of x = 2(m - 12)

• c = constant term = 2

\dashrightarrow \sf {b}^{2} - 4ac = 0

\dashrightarrow \sf { \big[2(m - 12) \big]}^{2} - 4 \times (m - 12) \times 2 = 0

\dashrightarrow \sf {2}^{2} \times (m - 12) ^{2} = 4 \times (m - 12) \times 2

\dashrightarrow \sf \cancel4 \times (m - 12) ^{2} = \cancel4 \times (m - 12) \times 2</p><p>

\dashrightarrow \sf (m - 12) ^{2} = 2(m - 12)

\dashrightarrow \sf {m}^{2} + 144 -( 2 \times m \times 12 )= 2m - 24</p><p>

\dashrightarrow \sf {m}^{2} + 144 -24m= 2m - 24

\dashrightarrow \sf {m}^{2} + 144 -24m - 2m + 24 = 0

\dashrightarrow \sf {m}^{2} -26m + 168 = 0

\dashrightarrow \sf {m}^{2} -14m - 12m + 168 = 0

\dashrightarrow \sf m(m -14)- 12(m -14) = 0

\dashrightarrow \sf (m -12)(m -14) = 0

\dashrightarrow \sf m -12 \: = 0 \: \: \: \: (or) \: \: \: m -14= 0

\dashrightarrow \sf m = 12\: \: \: \: \: (or) \: \: \: m = 14

\dashrightarrow \underline{ \boxed{ \red{\sf \therefore \textsf{ \textbf{ m = 12 \: , 14}}}}}</p><p>	</p><p> </p><p>

Similar questions