Math, asked by MoonlightPhoenix, 3 months ago

Find m + n :  \displaystyle \sf \int \: \dfrac{ {x}^{2009} }{(1 + {x}^{2}) {}^{1106} } dx = \dfrac{1}{m} \bigg( \dfrac{ {x}^{2} }{1 + {x}^{2} } \bigg) {}^{n}
• Class 12
• Integration ​

Answers

Answered by SrijanShrivastava
10

 \\  \int \frac{  {x}^{2009} }{(1 +  {x}^{2} ) ^{1006} } dx =  \frac{1}{m} ( \frac{ {x}^{2} }{1 +  {x}^{2} } ) ^{n}

You can easily integrate the LHS, but for now let's use RHS too.

Differentiating both the sides of the equation.

 \\   \small\frac{ {x}^{2009} }{(1 +  {x}^{2}) {}^{1006}  }  =  \frac{n}{m}  \frac{(1 +  {x}^{2})2 {x}  -  {x}^{2}(2x) }{(1 +  {x}^{2} ) {}^{2} }  \frac{ {x}^{2(n - 1)} }{(1 +  {x}^{2} ) {}^{n - 1} }

  \\  \small \frac{ {x}^{2009} }{(1 +  {x}^{2}) {}^{1006}  }  =  \frac{2n}{m}  \frac{ {x}^{2n - 1} }{(1 +  {x}^{2}) {}^{n + 1}  }

Comparing exponents and coefficient

2n - 1 = 2009

 \implies   \boxed{n = 1005}

2n = m

 \implies \boxed{ m = 2010}

Therefore,

 \boxed{m  + n = 3015}

Similar questions