Math, asked by rudhrapatel, 2 months ago

Find matrices A and B such that, can u plz help me

Attachments:

Answers

Answered by VishnuPriya2801
16

Question:-

Find matrices A and B such that ,

 \sf \: A  + B =  \begin{bmatrix} \sf \: 5& \sf \: 4 \\  \\  \sf \:7 & \sf \: 3 \end{bmatrix}  \: \& \:  \:  \: A - B = \begin{bmatrix} \sf \: 11& \sf \: 2 \\  \\  \sf \: - 1 & \sf \: 7 \end{bmatrix}

Answer:-

Given:-

 \: \sf \: A  + B =  \begin{bmatrix} \sf \: 5& \sf \: 4 \\  \\  \sf \:7 & \sf \: 3 \end{bmatrix} \:  \:  \:  \:  - - \:  equation \: (1). \\  \\  \\  \sf \: A - B = \begin{bmatrix} \sf \: 11& \sf \: 2 \\  \\  \sf \: - 1 & \sf \: 7 \end{bmatrix} \:  \:  -  -  \:  equation \: (2).

Adding equations (1) & (2) we get;

 \implies \sf \: A + B + A - B  = \begin{bmatrix} \sf \: 5& \sf \: 4 \\  \\  \sf \: 7 & \sf \: 3 \end{bmatrix} + \begin{bmatrix} \sf \: 11& \sf \: 2 \\  \\  \sf \: - 1 & \sf \: 7 \end{bmatrix} \\  \\  \\ \implies \sf \:2A = \begin{bmatrix} \sf \: 5 + 11& \sf \: 4 + 2 \\  \\  \sf \: 7- 1 & \sf \: 3 + 7 \end{bmatrix} \\  \\  \\ \implies \sf \:2A = \begin{bmatrix} \sf \: 16& \sf \: 6 \\  \\  \sf \: 6 & \sf \: 10 \end{bmatrix} \\  \\  \\ \implies \sf \:A = \begin{bmatrix} \sf \:  \dfrac{16}{2} & \sf \:  \dfrac{6}{2}  \\  \\  \sf \:  \dfrac{6}{2}  & \sf \:  \dfrac{10}{2}  \end{bmatrix} \\  \\  \\ \implies \sf  \red{\:A = \begin{bmatrix} \sf \:  8 & \sf \:  3  \\  \\  \sf \:  3  & \sf \:  5  \end{bmatrix}} \\

Substitute the value of A in equation (1).

 \implies \sf \:  \begin{bmatrix} \sf \: 8& \sf \: 3 \\  \\  \sf \: 3& \sf \: 5 \end{bmatrix} + B = \begin{bmatrix} \sf \: 5& \sf \: 4 \\  \\  \sf \: 7& \sf \: 3 \end{bmatrix} \\  \\  \\  \implies \sf \: B = \begin{bmatrix} \sf \: 5& \sf \: 4 \\  \\  \sf \: 7& \sf \: 3 \end{bmatrix} - \begin{bmatrix} \sf \: 8& \sf \: 3 \\  \\  \sf \: 3& \sf \: 5 \end{bmatrix} \\  \\  \\ \implies \sf \: B = \begin{bmatrix} \sf \: 5 - 8& \sf \: 4 - 3 \\  \\  \sf \: 7 - 3& \sf \: 3 - 5 \end{bmatrix} \\  \\  \\ \implies \sf \red{B = \begin{bmatrix} \sf \:  - 3& \sf \: 1 \\  \\  \sf \:4 & \sf \:  - 2 \end{bmatrix}}


amansharma264: Awesome
VishnuPriya2801: Thank you ! :)
Answered by mathdude500
2

Question:-

Find matrices A and B such that ,

 \rm \: A + B \:  =   \begin{bmatrix} 5 & 4\\ 7 & 3\end{bmatrix}

 \rm \: A  -  B \:  =   \begin{bmatrix} 11 & 2\\  - 1 & 7\end{bmatrix}

Answer:-

Given:-

 \rm \: A + B \:  =   \begin{bmatrix} 5 & 4\\ 7 & 3\end{bmatrix} -  -  - (i)

 \rm \: A  -  B \:  =   \begin{bmatrix} 11 & 2\\  - 1 & 7\end{bmatrix} -  -  - (ii)

On adding (i) and (ii), we get

\rm :\implies\:2A   \:  =   \begin{bmatrix} 5 + 11 & 4 + 2\\ 7 - 1 & 3 + 7\end{bmatrix}

\rm :\implies\: \rm \: 2A \:  =   \begin{bmatrix} 16 & 6\\ 6 & 10\end{bmatrix}

\rm :\implies\: \boxed{ \pink{ \bf \: A  \:  =  \tt \:   \begin{bmatrix} 8 & 3\\ 3 & 5\end{bmatrix}}}

Now,

Again,

We have,

 \rm \: A + B \:  =   \begin{bmatrix} 5 & 4\\ 7 & 3\end{bmatrix} -  -  - (i)

 \rm \: A  -  B \:  =   \begin{bmatrix} 11 & 2\\  - 1 & 7\end{bmatrix} -  -  - (ii)

On Subtracting (ii) from (i), we get

\rm :\implies\: \rm \: 2B \:  =   \begin{bmatrix} 5 - 11 & 4 - 2\\ 7 + 1 & 3 - 7\end{bmatrix}

\rm :\implies\: \rm \: 2 B \:  =   \begin{bmatrix}  - 6 & 2\\ 8 &  -  4\end{bmatrix}

\rm :\implies\: \boxed{ \pink{ \bf \:   B\:  =  \tt \:  \begin{bmatrix}  - 3 & 1\\ 4 &  - 2\end{bmatrix} }}

Similar questions