Physics, asked by mukeshkachhawa1980, 6 months ago

find maxima and minima to given curve y=x ³-x²-x-1​

Answers

Answered by ExElegant
2

\huge{\mathbb{\red{ANSWER:-}}}

\sf{y = x^{3} - x^{2} - x - 1}

Differential with respect to x

\sf{\dfrac{dy}{dx}=\dfrac{d}{dx}(x^{3}-x^{2}-x-1)}

\sf{\dfrac{dy}{dx}= 3x^{2} - 2x - 1}

\sf{For \: roots-}

\sf{\dfrac{dy}{dx} = 0}

\sf{3x^{2} - 2x - 1 = 0}

\sf{3x^{2} - 3x + x - 1}

\sf{3x(x - 1) + 1(x - 1) = 0}

\sf{(x - 1)(3x + 1) = 0}

\sf{x = 1 \: , \: x = \dfrac{-1}{3}}

\sf{Now \: ,}

\sf{\dfrac{d^{2} y}{dx^{2}} =\dfrac{d}{dx}(\dfrac{dy}{dx})}

\sf{\dfrac{d^{2} y}{dx^{2}} =\dfrac{d}{dx}(3x^{2} - 2x - 1)}

\sf{\dfrac{d^{2} y}{dx^{2}} = 6x - 2}

\sf{For \: any \: value \: of \: x-}

\sf{if \: \dfrac{d^{2} y}{dx^{2}} < 0 \: ,}

\sf{then  \: , \: there \: would \: be \: maxima.}

\sf{if \: \dfrac{d^{2} y}{dx^{2}} > 0 \: ,}

\sf{then \: , \: there \: would \: be \: minima.}

\sf{At \: x = 1}

\sf{\dfrac{d^{2} y}{dx^{2}} = 6 - 2 = 4 > 0}

\sf{At \: x =\dfrac{-1}{3}}

\sf{\dfrac{d^{2} y}{dx^{2}} =6(\dfrac{-1}{3}) - 2 = -2-2 = -4 < 0}

\sf{So \: ,}

\sf{At \: x = 1 \: , \: There \: is \: minima.}

\sf{At \: x =\dfrac{-1}{3} \: , \: There \: is \: maxima.}

Similar questions