Math, asked by maveron1334, 9 months ago

find maximum power of 6 in 75!​

Answers

Answered by prajwal1697
2

 \huge \underline \bold \green{QUESTION}:

find \: the \: maximum \: power \: of \: 6 \: in \: 75 \: !

__________________________

 \huge \underline \bold \red{SOLUTION}:

we should use the following formula and

in the solution [.] represents greatest integer funtion

[ \frac{n}{ {p}^{1} } ] + [ \frac{n}{ {p}^{2} } ] + [ \frac{n}{ {p}^{3} } ] + ..... \\  =  > here \: n   =   75 \: and \: p = 6 \\  =  > [ \frac{75}{ {6}^{1} } ] + [ \frac{75}{ {6}^{2} } ] + [ \frac{75}{ {6}^{3} } ] + ..... \\  =  > [ \frac{75}6 ] + [ \frac{75}{ 36 } ] + [ \frac{75}{ 216 } ] + .....  \\  =  > 12 + 2 + 0 + 0 + ..... \\  =  > 14

__________________________

\underline\bold \red{final \: answer} : \\

 \boxed{ \green{powers \:  = 14}}

__________________________

\underline\bold \red{formulas \: used} :

[ \frac{n}{ {p}^{1} } ] + [ \frac{n}{ {p}^{2} } ] + [ \frac{n}{ {p}^{3} } ] + ..... \\

hope it helps you

Similar questions