find maximum value of 12 sinA - 9 sin^2A.
Answers
Answered by
0
Answer:
12sinx−9sin²x
=4–4+12sinx−9sin²x
=4−(4–12\sinx+9sin²x)
=4−(2–3sinx)²
So, it takes the maximum value when
(2–3\sinx)² gives the minimum value
Since for any real value of x,the term (2–3sinx)² is always positive.
So minimum value when,
2–3\sinx=0
Or \sinx=..
And the the maximum value of the given function is 4.
Answered by
1
Answer:
12sinx−9sin²x
=4–4+12sinx−9sin²x
=4−(4–12\sinx+9sin²x)
=4−(2–3sinx)²
So, it takes the maximum value when
(2–3\sinx)² gives the minimum value
Since for any real value of x,the term (2–3sinx)² is always positive.
So minimum value when,
2–3\sinx=0
Or \sinx=\frac{2}{3}
3
2
..
And the the maximum value of the given function is 4.
Similar questions