Math, asked by mruthulakumar, 1 year ago

Find median of the distribution given below is 14.4, find the value of x and y if the sum of the frequency is 20
Ci 0—6,6—12,12—18,18—24,24—30
F 4 x 5 y 1

Answers

Answered by Golda
371
Solution :-

I think there is a mistake done while typing of this question. I suppose 14.4 is the Median of the given distribution.

  Class Interval          Frequency          Cumulative Frequency

     0 - 6                           4                                  4

     6 - 12                         x                                4 + x

    12 - 18                        5                                9 + x

    18 - 24                        y                                9 + x + y

     24 - 30                       1                               10 + x + y
______________________________________________
                                      20                                                 
______________________________________________

10 + x + y = 20

x + y = 20 - 10

x + y = 10

Median = 14.4 

So, Median class is 12 - 18

Median = l + [(N/2 - cf)*i]/f

l = Lower limit of the Median Class = 12

Class Interval = i = 6

Cumulative Frequency (cf) of the class before the Median Class = 4 + x

N = 20

N/2 = 20/2 = 10

f = frequency of the Median Class = 5

⇒ Median = l + [(N/2 - cf)*i]/2

⇒ 14.4 = 12 + {10 - (4 + x)*6]/5

⇒ 14.4 - 12 = {(10 - 4 - x)*6}/5

⇒ 2.4 = {(6 - x)*6}/5

⇒ 2.4 = (36 - 6x)/5

⇒ 2.4*5 = 36 - 6x

⇒ 12 = 36 - 6x

⇒ - 6x = 12 - 36

 - 6x = - 24

⇒ 6x = 24

x = 24/6

x = 4

Since, x + y = 10

4 + y = 10

y = 10 - 4

y = 6

So, the value of x is 4 and the value of y is 6.

Answer.

prmkulk1978: Sir, Please check the formula : its written i/2
Golda: Sorry. it is i/f but it is written correctly in the beginning of the solution.
Golda: Sorry, it should be i/f but it is written correctly in the beginning of the solution.
prmkulk1978: no problem.. sir..
Answered by prmkulk1978
127
Solution :

****************************************************************************************
Class Interval              Frequency                       Cumulative Frequency

****************************************************************************************

0-6                                  4                                       4

6-12                                X                                      4+X

12-18                             5                                        9+X

18-24                             Y                                      9+X+Y

24-30                             1                                       10+x+Y
---------------------------------------------------------------------------------
Total                              20         
**********************************************************************************

∴X+Y+10=20

⇒X+Y=20-10

⇒X+Y=10 ------------(1)

Given Median =14.4

So Median Class is 12-18      

12-18                             5                                        9+X

By using formula:

Median =L+[N/2 -F]x(c/f)

where ,

L= Lower limit of median class= 12

N=20⇒N/2=20/2=10

F=Cf=Cumulative frequency of class before the median class=4+X

f=frequency of median class=5 

Class interval =c=6

∴ 14.4=12+[10-[4+X)]6/5

⇒14.4-12=[10-4-X]6/5

⇒2.4=([6-X]6/5

⇒5x2.4=6[6-X]

⇒12=36-6x

⇒12-36=-6X

⇒-24= - 6X

⇒X=24/6 = 4 ----------(2)

Now, substitute the value of X in equation 1 we get the value of Y

X+Y=10

4+Y=10

Y=10-4=6

∴X=4 and Y=6

Similar questions