Math, asked by samruddhitajanpure, 1 year ago

find modulus and amplitude of the complex number z= 1+I

Answers

Answered by singhpinki195
7

Here is your answer fully solved...

hope it helps

Attachments:
Answered by swethassynergy
0

The value of modulus and amplitude of  the complex number z= 1+i  are \sqrt{2} and \frac{\pi }{4} respectively.

Step-by-step explanation:

Given:

Complex number z= 1+i

To Find:

The value of modulus and amplitude of the complex number z= 1+i.

Formula Used:

Let  the complex number z= p+iq such that p∈R, q∈R

Modulus of complex number |Z|  =\sqrt{p^{2} +q^{2} }    ----------- Formula no.01

Amplitude of the complex number  θ  =tan^{-1}(\frac{q}{p} )    -----Formula no.02.

Solution:

As given-Complex number z= 1+i

Comparing with complex number z= p+iq

p=1 and q=1

Applying formula no.01.

Modulus of complex number |Z|  =\sqrt{p^{2} +q^{2} }

                                                      =\sqrt{1^{2} +1^{2} }

                                                      =\sqrt{1+1}   = \sqrt{2}

Applying formula no.02.

Amplitude of the complex number  θ  =tan^{-1}(\frac{q}{p} )

                                                                =tan^{-1}(\frac{1}{1} )

                                                                =tan^{-1}(1)

                                                                 =\frac{\pi }{4}

Thus,the value of modulus and amplitude of  the complex number z= 1+i  are \sqrt{2} and \frac{\pi }{4} respectively.

PROJECT CODE #SPJ3

Similar questions