Math, asked by krishnaprasad1011973, 8 months ago

find multiplicative inverse-1-√3 i ​

Answers

Answered by llSecreTStarll
3

\underline{\underline{\orange{\textbf{Step - By - Step - Explanation : -}}}}

To Find :

  • multiplicative Inverse of 1 - √3i

Solution :

Multiplcative inverse of 1 - √3i is 1/1 - √3i

Rationalising the denominator :

 \sf \:   =  \frac{1}{1 -  \sqrt{3}i } \times  \frac{1 +  \sqrt{3}i }{1 +  \sqrt{3}i }  \\  \\  = \sf \:  \frac{1 +  \sqrt{3}i }{(1 -  \sqrt{3}i)(1 +  \sqrt{3}  i)}  \\  \\ \sf \:   = \frac{1 +  \sqrt{3i} }{(1 {)}^{2} -  (\sqrt{3}i) {}^{2}   }  \\  \\ \sf \: =   \frac{1 +  \sqrt{3}i }{1 - 3 {i}^{2} }  \\  \\ \sf \:  we \: know \: that \bf \:  {i}^{2}  =  - 1 \\  \\ \sf \: =   \frac{1  +  \sqrt{3}i }{1 + 3}  \\  \\ \sf \:   = \frac{1 +  \sqrt{3} i}{4}

Similar questions