Math, asked by Moldybread, 11 months ago

Find n for the series 2 + 6 + 10 + 14 + ... if the sum of the related series is 1058

Answers

Answered by BrainlyConqueror0901
17

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Number\:of\:terms=23}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies A.P = 2,6,10,14,..... \\  \\  \tt:  \implies  Sum \: of \: n \: terms(s_{n}) = 1058 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Number \: of \: terms \: in \:A.P = ?

• According to given question :

 \tt \circ \: First \: term = 2 \\  \\  \tt \circ \: Common \: difference = 4  \\  \\  \bold{As \: we \: know \: that} \\  \tt: \implies  s_{n} =  \frac{n}{2} (2a + (n - 1)d) \\  \\ \tt: \implies 1058 =  \frac{n}{2} (2 \times 2 + (n - 1) \times 4) \\  \\ \tt: \implies 1058 \times 2 = n \times (4 + 4n - 4) \\  \\ \tt: \implies 1085 \times 2 = 4 {n}^{2}  \\  \\ \tt: \implies 2116 = 4 {n}^{2}  \\  \\ \tt: \implies  {n}^{2}  =  \frac{2116}{4}  \\  \\ \tt: \implies  {n}^{2}  = 529 \\  \\ \tt: \implies n =  \sqrt{529}  \\  \\  \green{\tt: \implies n =  \pm23 }\\  \\   \green{\tt \therefore Number \: of \: terms \: in \:A.P \: is \: 23}

Similar questions