Find n th derivative of sin (3x+5)
Answers
Answered by
0
Answer:
answer is diwn
Step-by-step explanation:
sin3x=3sinx−4sin3x
⟹y=sin3x=3sinx−sin3x4
y′=14.(3cosx−3cos3x)
⟹y′=14.(3sin(π2−x)−3sin(π2−3x))
y′′=14.(−3cos(π2−x)+32cos(π2−3x))
⟹y′′=14(−3sin(π2−(π2−x))+32sin(π2−(π2−3x)))
⟹y′′=14(−3sin(x)+32sin(3x))
⟹y′′=14(3sin(2∗π2+x)−32sin(2∗π2+3x))
Similar questions