Math, asked by kanishkakumari200711, 7 months ago

find no. of natural numbers which equal to the sum of squares of their digits​

Answers

Answered by simarsingh07
0

Answer:

The family of natural numbers includes all the counting numbers, starting from 1 till infinity. If n consecutive natural numbers are 1, 2, 3, 4, …, n, then the sum of squared ‘n’ consecutive natural numbers is represented by 12 + 22 + 32 + … + n2.

In short, it is denoted by the notation Σn2. The formula for the addition of squares of natural numbers is given below:

Σn2 = [n(n+1)(2n+1)]/6

Step-by-step explanation:

The family of natural numbers includes all the counting numbers, starting from 1 till infinity. If n consecutive natural numbers are 1, 2, 3, 4, …, n, then the sum of squared ‘n’ consecutive natural numbers is represented by 12 + 22 + 32 + … + n2.

In short, it is denoted by the notation Σn2. The formula for the addition of squares of natural numbers is given below:

Σn2 = [n(n+1)(2n+1)]/6

pls mark me as brainlist

Answered by Anonymous
4

Step-by-step explanation:

Question : Prove that√5 is irrational.

Answer :

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Similar questions