Math, asked by shivrajpatil4045, 4 months ago

find nth Derivative of y = 4x÷
(x-1)^2(x+1)^2​

Answers

Answered by mathdude500
3

 \tt :  \implies \: Let \: y \:  =  \: \dfrac{4x}{ {(x + 1)}^{2} {(x - 1)}^{2}  }

 \tt :  \implies \: y \:  = \dfrac{ {(x + 1)}^{2} -  {(x - 1)}^{2}  }{ {(x + 1)}^{2}  {(x - 1)}^{2} }

 \tt :  \implies \: y = \dfrac{1}{ {(x + 1)}^{2} }  - \dfrac{1}{(x - 1)^{2} }

Now, Differentiate w. r. t. x, we get

 \tt :  \implies \: y_1 = \dfrac{( - 2)}{ {(x  - 1)}^{3} }  - \dfrac{( - 2)}{ {(x + 1)}^{3} }

Now, again differentiating both sides w. r. t. x, we get

 \tt :  \implies \: y_2 = \dfrac{( - 2)( - 3)}{ {(x  - 1)}^{4} }  - \dfrac{( - 2)( - 3)}{ {(x + 1)}^{4} }

 \tt :  \implies \: y_2 = \dfrac{ {( - 1)}^{2} 3!}{ {(x  - 1)}^{4} }  - \dfrac{ {( - 1)}^{2}3! }{ {(x + 1)}^{4} }

.

.

.

.

.

.

.

Now, again differentiating till nth derivative we get

 \tt :  \implies \: y_n = \dfrac{ {( - 1)}^{n} (n + 1)!}{ {(x  - 1)}^{(n + 2)} }  - \dfrac{ {( - 1)}^{n}(n + 1)! }{ {(x + 1)}^{n + 2} }

Similar questions