Math, asked by papafairy143, 1 day ago

Find number of integral roots of the inequation

 {x}^{6}  -  {x}^{5}  +  {x}^{4}  -  {x}^{2}  + x - 1 < 0


Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given inequality is

\rm \: {x}^{6} - {x}^{5} + {x}^{4} - {x}^{2} + x - 1 < 0 \\

\rm \: {x}^{5}(x - 1) + {x}^{2}({x}^{2} - 1) + (x - 1) < 0 \\

\rm \: {x}^{5}(x - 1) + {x}^{2}(x - 1)(x + 1) + (x - 1) < 0 \\

\rm \: (x - 1)\bigg[ {x}^{5} +  {x}^{2}(x + 1) + 1\bigg] < 0 \\

\rm \: (x - 1)\bigg[ {x}^{5} +  {x}^{3} +  {x}^{2}  + 1\bigg] < 0 \\

\rm \: (x - 1)\bigg[ {x}^{3}({x}^{2} + 1) +  ({x}^{2}  + 1)\bigg] < 0 \\

\rm \: (x - 1)( {x}^{2} + 1)( {x}^{3} + 1) < 0 \\

\rm \: (x - 1)( {x}^{2} + 1)(x+ 1)( {x}^{2} - x + 1)  < 0 \\

Now,

\boxed{ \rm{ \: {x}^{2} + 1 > 0 \:  \forall \: x \:  \in \: R}} -  -  - (1) \\

and

\boxed{ \rm{ \: {x}^{2} - x + 1 > 0 \:  \forall \: x \:  \in \: R \: }} -  -  - (2) \\

[ Reason :- If a quadratic expression f(x) = ax² + bx + c such that a > 0 and Discriminant, D = b² - 4ac < 0, then f(x) > 0 ]

[ For, x² - x + 1, a = 1 > 0 and Discriminant, D = 1 - 4 = - 3 < 0 ]

So, above inequality can be rewritten as

\rm \: (x - 1)(x + 1) &lt; 0 \\

\rm\implies \: - 1 &lt; x &lt; 1 \\

\rm\implies \:x \:  \in \: ( - 1,1) \\

But we have to find the integral solution.

So,

\rm\implies \:x \:  = 0 \: is \: only \: integral \: solution \\

So,

\rm\implies \:Number \: of \: integral \: solution \:  =  \: 1 \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ |x|  &lt; y\rm\implies \: - y &lt; x &lt; y}\\ \\ \bigstar \: \bf{ |x|  \leqslant y\rm\implies \: - y \leqslant x \leqslant y}\\ \\ \bigstar \: \bf{ |x|  &gt; y\rm\implies \: x &lt;  - y \: or \: x &gt; y} \: \\ \\ \bigstar \: \bf{ |x| \geqslant y\rm\implies \:x \leqslant  - y \: or \: x \geqslant y}\\ \\ \bigstar \: \bf{ |x - a|  &lt; y\rm\implies \:a - y &lt; x &lt; a + y}\\ \\ \bigstar \: \bf{ |x - a|  \leqslant y\rm\implies \:a - y \leqslant x \leqslant a + y}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions