Math, asked by devang16, 1 year ago

find out integral of (secx)^3 dx

Answers

Answered by Prashant24IITBHU
1
Let's asume secx=a and tanx=b
so da=sec²x=secx X tanx dx

by using integration by parts, we get
secx tanx -  \int\limits^a_b { tan^{2} }secx \, dx

secx tanx - \int\limits^a_b { (sec^{2}-1) }secx \, dx

secx tanx - \int\limits^a_b { (sec^{3}x-secx) } \, dx

secx tanx - \int\limits^a_b { sec^{3}x } \, dx +  \int\limits^a_b {sec x} \, dx

 \int\limits^a_b { sec^{3}x } \, dx  = secx tanx - \int\limits^a_b { sec^{3}x } \, dx +  \int\limits^a_b {sec x} \, dx

 \int\limits^a_b { sec^{3}x } \, dx  + \int\limits^a_b { sec^{3}x } \, dx = secx tanx  +  \int\limits^a_b {sec x} \, dx

 2\int\limits^a_b { sec^{3}x } \, dx = secx tanx  +  \int\limits^a_b {sec x} \, dx

 2\int\limits^a_b { sec^{3}x } \, dx =  \frac{secx tanx  +  \int\limits^a_b {sec x} \, dx }{y}

 \int\limits^a_b { sec^{3}x } \, dx =  \frac{secx tanx  +  \int\limits^a_b {sec x} \, dx }{2}

 \int\limits^a_b { sec^{3}x } \, dx = \frac{secx tanx  +  ln(secx+tanx)}{y}  So, the  answer  is  \frac{secx tanx  +  ln(secx+tanx)}{2} + C

#Prashant24IITBHU

Prashant24IITBHU: it is written by using "equation entering mechanism" of Brainly.
Prashant24IITBHU: not u cannot copy and paste in this mechanism. You have to put values in predefined formula structures
Answered by Ashi03
3
CHECK OUT THE ATTACHMENT
HOPE IT HELPS ✌
Attachments:
Similar questions