Math, asked by jaydeeprajput1358, 9 months ago

Find out volume of solid obtained by rotating about x +axis the area of the parabola y^(2)=4ax cut off by its latus rectum.​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{Curve is}\;\mathsf{y^2=4ax}

\underline{\textbf{To find:}}

\textsf{Volume of the solid obtained by rotating about x-axis the area}

\textsf{of the parabola cut off by its latus rectum}

\underline{\textbf{Solution:}}

\textsf{Equation of latus rectum of the parabola}\;\mathsf{y^2=4ax\;is\;x=a}

\textsf{So, limits are x=0 and x=a}

\underline{\textbf{Volume of the solid formed}}

\mathsf{=\displaystyle\int\limits^b_a\,\pi\;y^2\;dx}

\mathsf{=\displaystyle\pi\int\limits^a_0\,4ax\;dx}

\mathsf{=\displaystyle\,4a\pi\int\limits^a_0\,x\;dx}

\mathsf{=4a\pi\left(\dfrac{x^2}{2}\right)\limits^a_0}

\mathsf{=\dfrac{4a\pi}{2}\left(x^2\right)\limits^a_0}

\mathsf{=2a\pi(a^2-0)}

\mathsf{=2a^3\pi\;cubic\;units}

\underline{\textbf{Find more:}}

Find area of the circle x^2+y^2=36 by using definite integration

https://brainly.in/question/28498480  

Attachments:
Similar questions