Math, asked by chetannayak230, 6 months ago

find p(0) and p(2) for p(y)=y^2 -y+1​

Answers

Answered by Anonymous
12

Given:-

  • p(y) = y² - y + 1

To find:-

  • p(0) and p(2)

Solution:-

Case I:-

\large{\tt{\longrightarrow{p(0) = 0^2 - 0 + 1}}}

\large{\tt{\longrightarrow{p(0) = 0 - 0 + 1}}}

\large{\tt{\longrightarrow{p(0) = 0 - 1}}}

\boxed{\large{\tt{\longrightarrow{\red{p(0) = -1}}}}}

Case II:-

\large{\tt{\longrightarrow{p(2) = 2^2 - 2 +1}}}

\large{\tt{\longrightarrow{p(2) = 4 - 2 + 1}}}

\large{\tt{\longrightarrow{p(2) = 4 - 3}}}

\boxed{\large{\tt{\longrightarrow{\red{p(2) = 1}}}}}

Hence,

  • Value of p(0) = -1
  • Value of p(2) = 1
Answered by Anonymous
55

Given Equation

  • \sf{p(y) = y^2 - y + 1}

To find

  • \sf{Value\: of\: p(0)}
  • \sf{Value\: of\: p(2)}

Solution

  • In this question, we have given an equation i.e., p(y) = y² - y + 1.

★ We will solve this question in two cases.

\large{\boxed{\boxed{\sf{Case\: I}}}}

\tt\longmapsto{p(y) = y^2 - y + 1}

\tt\longmapsto{p(0) = (0)^2 - (0) + 1}

\tt\longmapsto{p(0) = 0 - 0 + 1}

\tt\longmapsto{p(0) = 0 - 1}

\bf\longmapsto{p(0) = -1}

\large{\boxed{\boxed{\sf{Case\: II}}}}

\tt\longmapsto{p(y) = y^2 - y + 1}

\tt\longmapsto{p(2) = (2)^2 - (2) + 1}

\tt\longmapsto{p(2) = 4 - 2 + 1}

\tt\longmapsto{p(2) = 4 - 3}

\bf\longmapsto{p(2) = 1}

Hence, the values of

  • \sf{p(0) = -1}
  • \sf{p(2) = 1}

━━━━━━━━━━━━━━━━━━━━━━

Similar questions