Math, asked by killerhariyt, 4 months ago

find p(0),p(1) and p(2) for p(t) =2+t+2t²-8t³

Answers

Answered by Anonymous
46

A N S W E R :

➡️ Given -

  • p (t) = 2 + t + 2t² - 8t³

➡️ To Find -

  • p (0) = ?
  • p (1) = ?

➡️ Solution -

 \mapsto \rm \: p(0) = 2 + (0) + 2( {0)}^{2}  - 8( {0}^{3} )

 \mapsto \rm \: p(0) = 2 + 0 + 0 - 0

 \mapsto  \boxed{\rm{p(0) = 2}}

_________________________________

 \rm \mapsto \: p(2) = 2 + (2) + 2( {2)}^{2}  - 8( {2)}^{3}

 \mapsto \rm \: p(2) = 2 + 2 + 2 \times 4 - 8 \times 8

 \mapsto \rm \: p(2) = 2 + 2 + 8 - 64

 \mapsto \boxed{ \rm{p(2) =  - 52}}

_________________________________

Answered by Anonymous
13

{\huge{\fcolorbox{lime}{black}{\color{yellow}{Answer}}}}

★ p(t) = 2 + t + 2t² - 8t³

_________________________

# p(0) = 2 + 0 + 2×0² - 8×0³

→ p(0) = 2 + 0 + 0 - 0

→ p(0) = 2

_________________________

# p(2) = 2 + 2 + 2×2² - 8×2³

→ p(2) = 4 + 8 - 64

→ p(2) = -52

_________________________

Similar questions