Math, asked by shavinderchughe, 1 year ago

find p^2-1/p^2 if p = 2-√3

Answers

Answered by rk086466
9
hope this is helpful
Attachments:
Answered by Anonymous
16
Given :
p=2-√3

To find:
 {p}^{2}  -  \frac{1}{ {p}^{2}}  \\  \\ solution \\  \\ p = 2 -  \sqrt{3}  \\  \\  \frac{1}{p}  =  \frac{1}{2 -  \sqrt{3} }  \\  \\ rationalising \: the \: denominator \\  \\  \frac{1}{p}  =  \frac{1}{2 -  \sqrt{3} } \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }   \\  \\  \frac{1}{p}  = \frac{2 +  \sqrt{3} }{ {2}^{2}  -  { \sqrt{3} }^{2} }   \\  \\  \frac{1}{p} =  \frac{2 +  \sqrt{3} }{4 - 3}    \\  \\  \frac{1}{p} =  \frac{2 +  \sqrt{3} }{1}  \\  \\  \frac{1}{p}  = 2 +  \sqrt{3}  \\  \\  =  {p}^{2}  -  \frac{1}{ {p}^{2} }  \\  \\  =  {(2 -  \sqrt{3}) }^{2}  -  {(2 +  \sqrt{3}) }^{2} \\  \\  =  {(2)}^{2}  +  {( \sqrt{3} )}^{2}  - 2 \times 2 \times  \sqrt{3} - ( {(2)}^{2}  +  {( \sqrt{3} )}^{2}  + 2 \times 2 \times  \sqrt{3} ) \\  \\  = 4 + 3 - 4 \sqrt{3}  - (4 + 3 + 4 \sqrt{3} ) \\  \\  = 7 - 4 \sqrt{3} - 7 - 4 \sqrt{3}   \\  \\  =  - 8 \sqrt{3}
Similar questions