Find p and q, if (√(3 )-1)/(√3 +1 ) = p + q√3.
Answers
Answered by
9
..........THANKU..........
Attachments:
Answered by
1
Answer:
(root3-1)/(root3+1)=p+qroot3
Rationalise the denominator,
(root3-1)(root3-1)/(root3+1)(root3-1)=p+qroot3
(root3-1)^2/(root3^2 - 1^2)=p+qroot3
As we know (a-b)^2=(a^2-2ab+b^2)
[(root3)^2-2(root3x1)+1^2]/3-1=p+qroot3
(3-2root3+1)/2=p+qroot3
(4-2root3) / 2=p+qroot3
Take 2 as common,
2(2-root3)/2=p+qroot3
2-root3=p+qroot3
p+qroot3=2-root3
I am not sure what to do after this.
Similar questions