find particular integral of (D²-4D+3)y=sin3xcox3x
Answers
Answered by
0
Answer:
How can I solve (D2+4D+3)y=sinx+x∗e3x ?
00000000000000000000000000000000000000000
(D2+4D+3)y=sinx+x∗e3x(1)
COMPLIMENTARY FUNCTION
Aux. equation m2+4m+3=0⟹m=−1,−3
yc=C1e−x+C2e−3x
PARTICULAR INTEGRAL
yp=1D2+4D+3sinx+1D2+4D+3(x∗e3x)
=1−1+4D+3sinx+(x−2D+4D2+4D+3)1D2+4D+3e3x
=12(1+2D)sinx+(x−2∗3+432+4∗3+3)132+4∗3+3e3x
=1−2D2(1−4D2)sinx+124(x−512)e3x
=sinx−2cosx2(1+4)+124(x−512)e3x
=sinx−2cosx10+(12x−5288)e3x
y=C1e−x+C2e−3x+sinx−2cosx10+(12x−5288)e3x
Alternately ,
yp=1D2+4D+3sinx+1(D+3)(D+1)(x∗e3x)
=sinx−2cosx10+e3x1(D+6)(D+4)(x)
=sinx−2cosx10+e3x1D2+10D+24(x)
=sinx−2cosx10+e3x124(1+D2+10D24)(x)
=sinx−2cosx10+e3x(1+D2+10D24)−124(x)
=sinx−2cosx10+e3x1−D2+10D24+...24(x)
=sinx−2cosx10+e3xx−102424
Similar questions