Math, asked by akanshanagdeve4, 7 months ago

: Find points on the curve given by y = x3 – 6x2 + x + 3 where the tangents are parallel to the line
y = x + 5.​

Answers

Answered by MaheswariS
12

\underline{\textsf{Given:}}

\textsf{Curve is}\;\mathsf{y=x^3-6x^2+x+3}

\underline{\textsf{To find:}}

\textsf{The points on the given curve where the tangents are paralle to}

\mathsf{y=x+5}

\underline{\textsf{Solution:}}

\textsf{Let (a,b) be the point on the curve at which the tangent}

\textsf{is parallel to x-y+5=0}

\textsf{Consider,}

\mathsf{y=x^3-6x^2+x+3}

\textsf{Differentiate with respect to x}

\mathsf{\dfrac{dy}{dx}=3x^2-12x+1}

\textsf{Slope of tangent}

\mathsf{=(\dfrac{dy}{dx})_(a,b)}

\mathsf{=3a^2-12a+1}

\textsf{Since the tangent is parallel to x-y+5=0, we have}

\textsf{Slope of tangent at (a,b)=slope of x-y+5=0}

\mathsf{3a^2-12a+1=1}

\mathsf{3a^2-12a=0}

\mathsf{3a(a-4)=0}

\implies\mathsf{a=0,4}

\textsf{Since (a,b) lies on the curve, we have}\;\mathsf{b=a^3-6a^2+a+3}

\textsf{when a=0,}\;\mathsf{b=0^3-6(0)^2+0+3=3}

\textsf{when a=4,}\;\mathsf{b=4^3-6(4)^2+4+3=64-96+4+3=-25}

\therefore\textsf{The required points on the curve are (0,3) and (4,-25)}

Similar questions