Math, asked by aamydar8931, 1 year ago

Find points on the line x + y + 3 = 0 that are at a distance of 5 units
from the line x + 2y + 2 = 0

Answers

Answered by MaheswariS
5

\text{Let the required points on the line x+y=3=0 be (u,v) }

\text{Then, u+v+3=0}......(1)

\textbf{Given:}

\text{The distance of (u,v) from the line x+2y+2=0 = 5 units}

\implies\displaystyle|\frac{a\;x_1+b\;y_1+c}{\sqrt{a^2+b^2}}|=5

\implies\displaystyle|\frac{1(u)+2(v)+2}{\sqrt{1^2+2^2}}|=5

\implies\displaystyle|\frac{u+2v+2}{\sqrt{5}}|=5

\implies\;u+2v+2=\pm\;5\sqrt{5}

u+2v+2=5\sqrt{5}......(2)

u+2v+2=-5\sqrt{5}......(3)

\textbf{Solving (1) and (2):}

u+v+3=0......(1)

u+2v+2=5\sqrt{5}......(2)

\implies\;-v+1=5\sqrt{5}

\implies\;-v=5\sqrt{5}-1

\implies\;v=-5\sqrt{5}+1

(1)\implies\;u+(-5\sqrt{5}+1)+3=0

(1)\implies\;u=5\sqrt{5}-4

\textbf{Solving (1) and (3):}

u+v+3=0......(1)

u+2v+2=-5\sqrt{5}......(3)

\implies\;-v+1=-5\sqrt{5}

\implies\;-v=-5\sqrt{5}-1

\implies\;v=5\sqrt{5}+1

(1)\implies\;u+(5\sqrt{5}+1)+3=0

(1)\implies\;u=-5\sqrt{5}-4

\therefore\text{The required points are }\bf(5\sqrt{5}-4,-5\sqrt{5}+1)\text{ and }\bf(-5\sqrt{5}-4,5\sqrt{5}+1)

Similar questions