Math, asked by santoshgupta7955, 2 months ago

find points on the line y=x which are at a distance of 5 units from the line 4x +3y-1=0

Answers

Answered by kanishkagupta1234
3

\huge{\textbf{\textsf{{\color{navy}{An}}{\purple{sw}}{\pink{er}}{\color{pink}{:}}}}}

x+y=4\rightarrow y=4-x

4x+3y=10\rightarrow 4x+3y-10=0

The distance between the general line ax+by+c=0 and an arbitrary point M=(x_M,y_M) is:

{|ax_M+by_M+c|\over \sqrt{a^2+b^2}}

And we know that M is located on y=4-x \rightarrow y_M=4-x_M or M=(x_M,4-x_M).

And have in mind that we want the distance to be 1 unit. Putting all these together:

{|ax_M+by_M+c| \over \sqrt{a^2+b^2}}=1 \rightarrow {|4x_M+3y_M-10| \over \sqrt{4^2+3^2}}=1

\rightarrow |4x_M+3y_M-10|=5 \rightarrow |4x_M+3(4-x_M)-10|=5

\rightarrow |x_M+2|=5

Case A:

x_M+2=5 \rightarrow x_M=3 \rightarrow y_M=1 \rightarrow A=(3, 1)

Case B:

x_M+2=-5 \rightarrow x_M=-7 \rightarrow y_M=11 \rightarrow B=(-7, 11)

So the results are A=(3, 1) and B=(-7, 11).

Similar questions