find pq,qr,pr,pqr if
Attachments:
Answers
Answered by
0
Answer:
a) x²y² - x³z - y³z + xyz²
b) y²z² - xy³ - xz³ + x²yz
c) x²z² - x³y - yz³ + xy²z
d) x²y²z² - x³y³ - y³z³ - x³z³ + x⁴yz + xy⁴z + xyz⁴ - x²y²z⁴
Step-by-step explanation:
We are given,
p = x² - yz
q = y² - xz
r = z² - xy
We must find,
a)
pq
= (x² - yz)(y² - xz)
Using Distributive property,
= x² × y² - x² × xz - y² × yz + xz × yz
= x²y² - x³z - y³z + xyz²
b)
qr
= (y² - xz)(z² - xy)
Similarly,
= y²z² - xy³ - xz³ + x²yz
c)
pr
= (x² - yz)(z² - xy)
= x²z² - x³y - yz³ + xy²z
d)
pqr
(x² - yz)(y² - xz)(z² - xy)
= (x²y² - x³z - y³z + xyz²)(z² - xy)
= (x²y²z² - x³z³ - y³z³ + xyz⁴ - x³y³ + x⁴yz + xy⁴z - x²y²z⁴)
= (x²y²z² - x³y³ - y³z³ - x³z³ + x⁴yz + xy⁴z + xyz⁴ - x²y²z⁴)
Hope it helped and believing you understood it........All the best
Similar questions