Math, asked by sahe007, 3 months ago

find quadratic polynomial p(x) if sum of product of zeroes are -2 and 2 out of respectively​

Answers

Answered by UrSmile1
0

Given:

  \\ \red \bigstar \tt \:  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  =  \frac{tan \theta}{2}

________________________________________

To Prove:

 \\  \purple\bigstar \tt \:  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  =  \frac{tan \theta}{2}

________________________________________

Formulas:

\underline{\bf{\bullet \: Using \: the \: trigonometry \: identities \: we \: can \: write, }}

 \\   \tt \: (1) \: sin \theta = 2sin\frac{ \theta}{2} cos \frac{ \theta}{2}

  \\ \tt \: (2) \: cos \theta = 2  {cos}^{2}  \frac{ \theta}{2}  - 1

  \\ \tt \: (3) \:cos \theta = 1 - 2 {sin}^{2}  \frac{ \theta}{2}

________________________________________

Proof:

Taking LHS.

  \\ \implies \sf \: lhs \:  =  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  \\  \\

Applying these identities :

 \\  \implies \sf lhs = \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  \\  \\   \\  \implies \sf \: lhs =  \frac{1 + 2sin \frac{ \theta}{2}cos \frac{ \theta}{2}  - 1 + 2 {sin}^{2} \frac{ \theta}{2}   }{1 + 2sin \frac{ \theta}{2}cos  \frac{ \theta}{2} + 2 {cos}^{2}  \frac{ \theta}{2}   - 1}  \\  \\  \\  \implies \sf \: lhs =  \frac{2sin  \frac{ \theta}{2} cos \frac{ \theta}{2} + 2 {sin}^{2}  \frac{ \theta}{2}  }{2sin \frac{ \theta}{2}cos \frac{ \theta}{2}   + 2 {cos}^{2} \frac{ \theta}{2}  }  \\  \\  \\  \implies \sf \: lhs =  \frac{2sin \frac{ \theta}{2} cos \frac{ \theta}{2}  + sin \frac{ \theta}{2} }{2cos  \frac{ \theta}{2}sin \frac{ \theta}{2}  + cos \frac{ \theta}{2}  }

Cancelling the like terms :

 \\  \implies \sf \: lhs =  \frac{sin \frac{ \theta}{2} }{cos  \frac{ \theta}{2} }  \\  \\  \implies \sf \: lhs = tan \frac{ \theta}{2}  \\  \\  \implies \sf \: lhs = rhs

 \red \bigstar \boxed{ \sf{ \therefore \:  \frac{1 + sin \theta - cos \theta}{1 + sin \theta + cos \theta}  = tan \frac{ \theta}{2} }}

•Hence proved!

Similar questions