Math, asked by virat181, 1 year ago

find quadratic polynomial who zeros are a+b and a-b where a and b are real numbers. guys if you answer me I will follow u

Answers

Answered by kvnmurty
3
roots:  a+b,  a-b

quadratic polynomial:   x² - (a+b + a-b) x + (a+b)(a-b) = 0
                                     x² - 2 a x + a²-b² = 0



kvnmurty: click on the red heart thanks above
virat181: upcourse
virat181: but sorry I didn't get the option to mark ur answer as brainliest
Answered by Fuschia
2
Given roots : (a + b) and (a - b)

Sum of roots = (a + b) + (a - b) = a + a + b - b = 2a
Product of roots = (a + b)(a - b) =  a² - b²

Required quadratic polynomial = k[x² - (sum of roots) + (product of roots)] = 0
                                                      = k [ x² - (2a) + (a² - b²) ] = 0
                                                      = x² - 2a + (a² - b²)  = 0 , where k = constant

Hope This Helps You!

virat181: it's my pleasure
Similar questions