Math, asked by bmalik2937, 1 year ago

Find quadratic polynomial whose zeroes are minus 5 and 4

Answers

Answered by Anonymous
8

Solution :-

Zeroes are :- -5 & 4.

\sf \: Sum \: of \: zeroes \: ( \alpha  \:  +  \:  \beta ) \:   =  \:  - 5 \:  +  \: 4 \:   \\ \implies \:  - 1

\sf \: Product \: of \: zeroes \: ( \alpha  \beta ) \:  =  \:  - 5 \:  \times  \: 4 \: \\  \implies \: \:  - 20

\sf \: Polynomial \:  =  \: a \: ( {x}^{2}  \:   -  \: ( \alpha  \:  +  \:  \beta )x \:  +  \:  \alpha  \beta )

\sf \: \implies \: a \: ( {x}^{2}   \:   - \: ( - 1)x \:  +  \: ( - 20)

\sf \: \implies \: a \: ( {x}^{2}  \:  +  \: x \:  -  \: 20)

\sf \: Put \: a \:  =  \: 1

\sf \: \implies \:  {x}^{2}  \:  +  \: x \:  -  \: 20

\sf \: Hence,  \: the \: polynomial \: is   \:  :-

\boxed{\boxed {\sf{ {x}^{2}  \:   +  \:  x \:  -  \: 20}}}

Answered by Anonymous
5

Answer

Zeroes = 5,4

Sum = -5 + 4 = (-1)

Product = -20

Polynomial = x^2 + x - 20

Similar questions