Math, asked by vedantnikam395, 8 hours ago

Find radius of curvature of y=e^x at (0,1)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:y =  {e}^{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =  \dfrac{d}{dx}{e}^{x}

\rm :\longmapsto\:y_1 =  {e}^{x}

Again differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y_1 = \dfrac{d}{dx} {e}^{x}

\rm :\longmapsto\:y_2 = {e}^{x}

Now, we calculate the value of differential coefficients at ( 0, 1 ).

\rm :\longmapsto\:y_1 \: at \: (0,1) = {e}^{0} = 1

\rm :\longmapsto\:y_2 \: at \: (0,1) = {e}^{0} = 1

We know,

Radius of curvature for cartesian curve, y = f(x) is

 \boxed{ \bf{ \:  \rho \:  =  \: \dfrac{ {\bigg[1 +  {y_1}^{2} \bigg]}^{ \dfrac{3}{2} } }{ |y_2| } }}

So, on substituting the values, we get

\rm :\longmapsto\:{ \bf{ \:  \rho \:  =  \: \dfrac{ {\bigg[1 +   {1}^{2}  \bigg]}^{ \dfrac{3}{2} } }{ 1 } }}

\rm :\longmapsto\: \rho \:  =  \:  {\bigg[1 + 1\bigg]}^{\dfrac{3}{2} }

\rm :\longmapsto\: \rho \:  =  \:  {\bigg[2\bigg]}^{\dfrac{3}{2} }

\rm :\longmapsto\: \rho \:  =  \:  {\bigg[ {( \sqrt{2} )}^{2} \bigg]}^{\dfrac{3}{2} }

\rm :\longmapsto\: \rho \:  =  \:  {\bigg[ {( \sqrt{2} )} \bigg]}^{3}

\bf\implies \: \rho \:  =  \: 2 \sqrt{2}

Additional Information :-

1. Radius of curvature for polar curves

 \boxed{ \bf{ \:  \rho \:  =  \: \dfrac{ {\bigg[1 +  {r_1}^{2} \bigg]}^{ \dfrac{3}{2} } }{ | {r}^{2} +2 {r_1}^{2} - r r_2| } }}

2. Radius of curvature for parametric curves

 \boxed{ \bf{ \:  \rho \:  =  \: \dfrac{ {\bigg[ {x_1}^{2}  +  {y_1}^{2} \bigg]}^{ \dfrac{3}{2} } }{ \:  \:  \:  \:  | x_1y_2  - y_1x_2| \:  \:  \:  \:  \:  \: }}}

Similar questions