Math, asked by Sharandeepkaur13, 9 months ago

find remainder when 3x^2+x-1 is divided by x+1​

Answers

Answered by MisterIncredible
30

Given :-

Quadratic expression : 3x² + x - 1

Required to find :-

Remainder when it is divided by ( x + 1 )

Condition mentioned :-

  • No condition

Method used :-

  • Remainder theorem

Solution :-

Given information :-

Quadratic expression :- 3x² + x - 1

we need to find the remainder when it is divided by ( x + 1 )

Let's consider the polynomial as ;

p ( x ) = 3x² + x - 1

when p ( x ) is divided by ( x + 1 ) it leaves remainder

So,

Let ;

=> x + 1 = 0

=> x = - 1

substitute this value in place of x in p ( x )

p ( - 1 ) = 3 ( - 1 )² + ( - 1 ) - 1

p ( - 1 ) = 3 ( 1 ) - 1 - 1

p ( - 1 ) = 3 - 2

p ( - 1 ) = 1

Therefore ,

When ( x + 1 ) divided p ( x ) it leaves remainder as 1

Verification :-

Now, let's perform long division to know whether our answer is correct or wrong

 \rm x + 1 \big)3 {x}^{2}  +  x - 1 \big(3x - 2  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \:  \:  3 {x}^{2}  +3x \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \rm \underline{( - )( - ) \:  \:  \:  \:  \:  \:  \: } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \rm - 2x - 1  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm - 2x - 2 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \rm \underline{( + ) \: (  + ) \:  \:  \:  \:  \: }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   1 \:  \:  \:  \: }

Hence verified !

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
3

\huge\sf\pink{Answer}

☞ Remainder is equal to 1

\rule{110}1

\huge\sf\blue{Given}

✭ 3x²+x-1 ÷ x+1

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The remainder?

\rule{110}1

\huge\sf\purple{Steps}

So here we simply have to equate the divisor with Zeros and then substitute the value found in the dividend. Then we would get a final number and that would be our Remainder

Calculating

\sf x+1 = 0

\sf\red{ x = -1}

Substituting the value of x in the dividend,

»» \sf 3(-1)^2 + (-1) -1

»» \sf 3(1) - 1 -1

»» \sf 3 - 2

»» \sf\orange{Remainder = 1}

\rule{170}3

Similar questions