Math, asked by anushae102, 6 months ago

find roots of y-1/3y=1/6​

Answers

Answered by Anonymous
2

Solution:-

 \rm \to \: y -  \dfrac{1}{3y}  =  \dfrac{1}{6}

Now simplify

 \rm \to \:  \dfrac{3y(y) - 1}{3y}  =  \dfrac{1}{6}

 \rm \to \:  \dfrac{3 {y}^{2} - 1 }{3y}  =  \dfrac{1}{6}

Using cross multiplication

 \rm \to \: 6(3 {y}^{2}  - 1) = 3y(1)

 \rm \to \: 18 {y}^{2}  - 6 = 3y

 \rm \to \: 18 {y}^{2}  - 3y - 6 = 0

 \rm \to \: 3(6 {y}^{2}  - y - 2) = 0

 \rm \to \: 6 {y}^{2}  - y - 2 = 0

Now factories the equation

 \rm \to \: 6 {y}^{2}  - y - 2 = 0

 \rm \to \: 6 {y}^{2}  -4y  + 3y - 2 = 0

 \rm \to \: 2y(3y - 2) + 1(3y - 2) = 0

 \rm \to \: (2y + 1)(3y - 2) = 0

 \rm \to \: 2y + 1 = 0 \:  \: and \:  \: 3y - 2 = 0

 \rm \to \: y =  \dfrac{ - 1}{2} \:  and \: y =  \dfrac{2}{3}

So roots of given equation is

\rm \to \: y =  \dfrac{ - 1}{2} \:  and \: y =  \dfrac{2}{3}

Answered by Anonymous
1

Answer:

y -  \frac{1}{3y}  =  \frac{1}{6}

take L.C.M

 \to \frac{3 {y}^{2} - 1 }{3y}  =  \frac{1}{6}

 \to3 {y}^{2}  - 1 =  \frac{3y}{6}  =  \frac{y}{2}

cross multiply

 \to6 {y}^{2}  - 2 = y

 \to6 {y}^{2}  - y - 2 = 0

solving the quadratic equation we get

 \to2y(3y - 2) + 1(3y - 2) = 0

 \to(2y + 1)(3y - 2) = 0 \\   \to \: y =  \frac{ - 1}{2} , \frac{2}{3}

Similar questions